Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Health & Social Care in the Community ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2290941

ABSTRACT

Nature-based social prescribing such as "blue prescription” promotes public health and health improvement of individuals with long-term health conditions. However, there is limited evidence explaining the relationship of contexts, mechanisms, and outcomes of implementing blue prescription programmes (BPPs) in health and social care settings that could inform policy and practice. We conducted a systematic realist review by searching PubMed, Web of Science, PsycInfo, Scopus, MEDLINE, and CINAHL for articles published in English between January 2000 and June 2022 about health and social care professionals providing referral to or prescription of blue space activities (e.g., swimming, fishing, surfing, etc.) with health-related outcomes. Components and descriptions of BPP implementation were extracted and used to develop themes of contextual factors used to develop programme theories and a logic model demonstrating the mechanisms of BPP implementation. Sixteen studies with adequate to strong quality were included from 8,619 records. After participating in BPPs referred to or prescribed by health and social care professionals, service users had improvements in their physical, cognitive (mental), social health, and proenvironmental knowledge. Service user-related contextual factors were referral information, free equipment, transportation, social support, blue space environments, and skills of service providers. Programme-related contextual factors were communication, multistakeholder collaboration, financing, and adequate service providers. Programme theories on service user enrolment, engagement, adherence, communication protocols, and programme sustainability explain the mechanisms of BPP implementation. BPPs could promote health and wellbeing if contextual factors and programme theories associated with service users' characteristics and programme delivery are considered in the design, delivery, and evaluation of BPPs. Our study was registered with PROSPERO (CRD42020170660).

2.
Emerg Infect Dis ; 29(1)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2230070

ABSTRACT

Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections during Omicron subvariant waves contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.

3.
BMC Public Health ; 22(1): 1283, 2022 07 02.
Article in English | MEDLINE | ID: covidwho-1974134

ABSTRACT

BACKGROUND: Novel coronaviruses and influenza can cause infection, epidemics, and pandemics. Improving hand hygiene (HH) of the general public is recommended for preventing these infections. This systematic review examined the effectiveness of HH interventions for preventing transmission or acquisition of such infections in the community. METHODS: PubMed, MEDLINE, CINAHL and Web of Science databases were searched (January 2002-February 2022) for empirical studies related to HH in the general public and to the acquisition or transmission of novel coronavirus infections or influenza. Studies on healthcare staff, and with outcomes of compliance or absenteeism were excluded. Study selection, data extraction and quality assessment, using the Cochrane Effective Practice and Organization of Care risk of bias criteria or Joanna Briggs Institute Critical Appraisal checklists, were conducted by one reviewer, and double-checked by another. For intervention studies, effect estimates were calculated while the remaining studies were synthesised narratively. The protocol was pre-registered (PROSPERO 2020: CRD42020196525). RESULTS: Twenty-two studies were included. Six were intervention studies evaluating the effectiveness of HH education and provision of products, or hand washing against influenza. Only two school-based interventions showed a significant protective effect (OR: 0.64; 95% CI 0.51, 0.80 and OR: 0.40; 95% CI 0.22, 0.71), with risk of bias being high (n = 1) and unclear (n = 1). Of the 16 non-intervention studies, 13 reported the protective effect of HH against influenza, SARS or COVID-19 (P < 0.05), but risk of bias was high (n = 7), unclear (n = 5) or low (n = 1). However, evidence in relation to when, and how frequently HH should be performed was inconsistent. CONCLUSIONS: To our knowledge, this is the first systematic review of effectiveness of HH for prevention of community transmission or acquisition of respiratory viruses that have caused epidemics or pandemics, including SARS-CoV-1, SARS-CoV-2 and influenza viruses. The evidence supporting the protective effect of HH was heterogeneous and limited by methodological quality; thus, insufficient to recommend changes to current HH guidelines. Future work is required to identify in what circumstances, how frequently and what product should be used when performing HH in the community and to develop effective interventions for promoting these specific behaviours in communities during epidemics.


Subject(s)
COVID-19 , Hand Hygiene , Influenza, Human , COVID-19/prevention & control , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , SARS-CoV-2
4.
N Engl J Med ; 386(13): 1207-1220, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1692473

ABSTRACT

BACKGROUND: The duration and effectiveness of immunity from infection with and vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relevant to pandemic policy interventions, including the timing of vaccine boosters. METHODS: We investigated the duration and effectiveness of immunity in a prospective cohort of asymptomatic health care workers in the United Kingdom who underwent routine polymerase-chain-reaction (PCR) testing. Vaccine effectiveness (≤10 months after the first dose of vaccine) and infection-acquired immunity were assessed by comparing the time to PCR-confirmed infection in vaccinated persons with that in unvaccinated persons, stratified according to previous infection status. We used a Cox regression model with adjustment for previous SARS-CoV-2 infection status, vaccine type and dosing interval, demographic characteristics, and workplace exposure to SARS-CoV-2. RESULTS: Of 35,768 participants, 27% (9488) had a previous SARS-CoV-2 infection. Vaccine coverage was high: 95% of the participants had received two doses (78% had received BNT162b2 vaccine [Pfizer-BioNTech] with a long interval between doses, 9% BNT162b2 vaccine with a short interval between doses, and 8% ChAdOx1 nCoV-19 vaccine [AstraZeneca]). Between December 7, 2020, and September 21, 2021, a total of 2747 primary infections and 210 reinfections were observed. Among previously uninfected participants who received long-interval BNT162b2 vaccine, adjusted vaccine effectiveness decreased from 85% (95% confidence interval [CI], 72 to 92) 14 to 73 days after the second dose to 51% (95% CI, 22 to 69) at a median of 201 days (interquartile range, 197 to 205) after the second dose; this effectiveness did not differ significantly between the long-interval and short-interval BNT162b2 vaccine recipients. At 14 to 73 days after the second dose, adjusted vaccine effectiveness among ChAdOx1 nCoV-19 vaccine recipients was 58% (95% CI, 23 to 77) - considerably lower than that among BNT162b2 vaccine recipients. Infection-acquired immunity waned after 1 year in unvaccinated participants but remained consistently higher than 90% in those who were subsequently vaccinated, even in persons infected more than 18 months previously. CONCLUSIONS: Two doses of BNT162b2 vaccine were associated with high short-term protection against SARS-CoV-2 infection; this protection waned considerably after 6 months. Infection-acquired immunity boosted with vaccination remained high more than 1 year after infection. (Funded by the U.K. Health Security Agency and others; ISRCTN Registry number, ISRCTN11041050.).


Subject(s)
Adaptive Immunity , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adaptive Immunity/immunology , Asymptomatic Diseases , BNT162 Vaccine/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/therapeutic use , Health Personnel , Humans , Prospective Studies , United Kingdom , Vaccination/methods , Vaccine Efficacy
SELECTION OF CITATIONS
SEARCH DETAIL